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l*}lgh -throuhgput biology iIs yielding a vast amount of
@ta the genome, transcriptional regulation and
$ proteome of many microbial organisms.

"'?*

* Yet, the complete metabolic network of even the
simplest fully sequence living system has not been

elucidated

* We want to develop computational inference methods
to enhance the pace of metabolic pathway discovery
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&~ Elucidating metabolic pathways through
g~ computational inference over biomolecular data
3

)+ Two intertwined predictive goals ...

Analysis: Piecing together plausible views of microbial
metabolic pathways

Engineering: Rationally designing new metabolic
capabilities

* Application to specific biological problems and
experimental collaboration




& Traditional methods for experimental
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determination of pathways are labour-intensive and
time-consuming

* There is no high- throughput experimental strategy

yet for pathway discovery

* With the availability of whole microbial genomes it

IS possible to theoretically identify putative
proteins and their functions, computationally

* Computational reconstruction of pathways is

feasible




3 requires an integrative approach

o Informatics iIs key for representing biochemical
concepts and making them amenable to

computation

Computational approaches are crucial for inference
over biological knowledge

We are developing such a computational
framework to support metabolic inference
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~2>-Many proteins in microbial genomes have not be
£ ~functionally characterized

* Piecing together functional characterizations of

enzymes into plausible metabolic pathways is not
straightforward

* Many microbial organisms have new enzymes and
novel pathways -- how do we identify these ?
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:;%ﬁlven and input compound and an output
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s compound, find a series of enzyme-catalyzed
=) transformations that convert the input to the
output

* For example: What is the pathway from alpha-d-
glucose to pyruvate in E.coli ?

In E.coli this series of enzyme catalyzed
transformations is known as glycolysis




For example, H.pylori is responsible for
peptic ulcers; treatments exist but there
IS N0 cure

There are many open questions about Its
Its intermediary metabolic pathways

How is glucose metabolised in H.pylori ?




S Ref-G3
i
"
e

<D—Glyc eraldehyde

Glycergl

Lactaldehyde

2

7.1

. .69
D—Fructose 1-phosphate . D—Fructose

Ref-G1

+ 5.3.1.5

beta—D—-Glucose 6—-phosphate-

beta—D—Fructose 6—phosphate

D-Fructose 1,6—bisphosphate

IS
-
\]
i
w

- - - - - — = — =

=

Glycerone phosphate =

5.1.3.15

e 6—phosphate

e

1.1.1.49

~

3.1.1.31

67PhosphofD7§ luconate
A
1
: 4.2.1.12
Y
27Dehydro]37deoxy76fphosphofogluconate

4.1.3.16

Methylglyox

1.2.1.12

1

U

- Y
DfGlyceralc‘iehyde 3—phosphate

1

1

U

37Phospho—‘D—glyceroy1 phosphate

1
: 2.7.2.3

Y

3—Phospho—AD—g1ycerate

1
: 5.4.2.1

Y

2—Phospho—AD—g1ycerate

1
: 4.2.1.11

Y

Phosphoenolpyruvate

A
Y

beta—D-Glucose

D—Gluc

2-Dehy:

D-Mannonate

D-Gluc

2-Dehydro—3—deoxy—D-glucarate

I
ono—1,5-lactone

3.1.1.17

onic acid

4.2.1.39
dro—3—deoxy—D-gluconate

4.2.1.8

1.1.1.57

e D-Fructuronate

5.3.1.12

uronolactone -1 - 112 D-Glucuronate

Arate g 3—Dehydro—4—deoxy—D-glucarate

4.2.1.40

Pyruvate

PathMiner solutions for reference map

sively \\+
!

e L ‘}.‘ Q""‘\"‘I
S B .i




0
«2-Even reference or standard pathways are not
~  always followed precisely in microbial organisms
~"

—

In many organisms alternative biochemical routes
or detours have been observed (Cordwell, 1999)

These alternative pathways can use known or
unknown enzymes

How do we infer such pathways in general
computationally ?
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= (from annotation)

I. Homologues have diverged and undetectable by
sequence similarity.

I.LEnzyme(s) from another superfamily catalyze steps in
pathway.

Il1i.There is a non-obvious pathway detour




.§ Compounds then the inference is harder. Consider,

I. A new sequence of known enzyme-catalyzed
transformations are involved

11.LA biochemical pathway must be identified, de novo.
That i1s, a plausible sequence of novel enzymatic
functions must be identified
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.%@We represent biochemistry rationally to enable
3

& computations with it and to define novel types of
biocatalytic functions

* This representation is the basis for: \

Integrating available biomolecular and biochemical
data

Making inferences about functions and pathways




*“ e have developed a computational representation
of metabolism that resolves biocatalysis into two

%
) parts:

The chemical component captures the chemical nature
of the underlying transformations between compounds.

The biological component captures the enzymatic roles
of gene products in terms of specific transformations




H%We abstract metabolism as a hyperdim. state-space
@ln which compounds are points and transformations

::&.
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= are state-transitions

* Each compound is represented in symbolic terms by
Its chemical structure components. Eg: carbon
dioxide

© x(CO2) = ((C 1)(0O 2)(C=0 2))

* The representation also includes the molecular

graph to infer adjacency of any atom or bond

* We have 10,429 compounds from KEGG




Q ector differences between states
"§<j Transformation between alpha-D-glucose-6-
phosphate (adg6p) and alpha-D-glucose (adqg) is
represented as:

* T(adg6p,adg) = x(adgép)- x(adg)
= ((P 1)(O 4)(P-0 3))

* We build transformations from 5,241 reactions
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.§' * Enzymes are described by EC numbers, gene

Nnames

* Enzymes can catalyze multiple transformations

* We have around 3,081 defined enzymes
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2-For each organism, we have the complete set of
% putative proteins and their assigned functions,

=) including:
Enzymes

Transporters

* We also have all sequence data from SwissProt and
GenBank

* We have the complete genomes for 100 organism&%{
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«2-By integrating a large amount of metabolic
INformation we can now make inferences with it:

Predict metabolic pathways from genomic data by
finding plausible biochemical routes

Predict biocatalytic functions from protein

superfamilies to suggest possible functions of putative
protein (from genomic data)
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@mce the sequencing of the first microbial
s genome, H.influenza, a number of computational

<) methods have been developed to reconstruct
reference pathways. Eg. Magpie, PatholLogic, and

WIT

* Reconstruction is an important starting point for
understanding pathways in an organism but there
are generally many missing enzymes and gaps in
such pathways

* We needed strategy to infer new pathways
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onsider our of metabolism: compounds are states,
% transformations are state-transitions, and
) compounds have chemical successors

* We elucidate a metabolic pathway computationally
by state-space search

Each predicted pathway Iis series of state-transitions

This produces a combinatorially large number of

possible solutions. How can we pick a reasonable \3{
subset ?
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sHeurisic search is an informed search technique
nat uses a best-first algorithm to explore a state-
pace to find a pathway from initial to final state.

* As opposed to blind search (BFS or DFS),
Informed search methods use an evaluation
function (F) to measure the cost of a path

* F can be calculated in different ways:

* Greedy - minimize cost to goal (F=H)

* A* - minimize sum of cost so far (G) and cost to goal \‘3{
(F=G+H)
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ﬁ'o predict metabolic pathways by heuristic search,
@e must calculate the heuristic evaluation function, F

::&.
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=—¢ |n general, there are complex factors that determine
the cost of a pathway. We wanted a simple concept to

compute F

= We decided to test the chemical distance between
states to estimate biochemical cost of a pathway from
X(0) to x(L), where x(m) Is an intermediate state In
the pathway:

*F(Oom,L) = G(0O,m) + H(m,L)
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f%ﬁased on this algorithm, have developed

+
4+,

PathMiner, an interactive computational framework
for automated metabolic pathway elucidation
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* A* search used in PathMiner always finds a
pathway that is optimal in F, not the shortest
pathway, and A* search is significantly faster

than blind search

* We are using PathMiner for elucidating

Microbial pathways from genomic annotations

¢ Synthetic pathways for engineering
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@Ve are testing PathMiner by investigating

5 pathways in different microbes: H.pylori,
D.radiodurans and S.oneidenosis MR-1

In H.pylori we found a number of pathways that are
congruent with experimentally determined

pathways, including:
* Glucose metabolism

Pentose phosphate pathway
¢ TCA
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«2-t is important to consider pathways in the context
; of broader biochemical processes.

—

One way to elucidate the pathways in an organism
IS to analyze the complete network using functional
annotations of genes and known transporters

* We have built a complete network visualizaiton of
D.radiodurans, which we are using to analyze gaps
and putative proteins that can fill those gaps.







Iven the large amount of sequence data how
accurately can we infer biocatalytic roles ?

By systematically computing the correlation of
known enzymatic functions with sequence
similarity we find:

Only 35% of enzymatic functions can be assigned with
confidence

There are many cases of false positives and false
negatives




* Each category has four levels of specification

* There are about 3,500 specific reaction types across
all known enzymes

* Though not exhaustive, It covers most enzymes




¥ ~"number signifying the level in the hierarchy. E.q.

2%
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2 ) EC 1.2.3.4 is oxalate oxidase:

Class 1. Oxidoreductase
Sub-class 2: Acts on aldehyde or oxo group of donor
Sub-sub-class 3: The acceptor is oxygen

Serial number 4: The specific reaction: oxalate+02<=>
hydrogen peroxide+CO2
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g@’h C classification is manually derived the
@lfferences between levels are not consistent across
g the functional categories
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* The scheme does not capture function uniquely.
(Eg. Enzymes that transfer groups share
characteristics with ligases)

* The hierarchical organization does not allow
complex functions to share multiple characteristics.
(Eg. A transferase is like a ligase)

* These factors make EC identifiers difficult to
compute with
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Phosphoribosylglycinamide fﬂl‘[ﬂ}’ll!'ﬂﬂﬁfﬁi:i;ﬂﬁ

EC 2.1.2.2 is homologous to ligases and has

multiple domains with other activities:
Glycinamide ribonucleotide synth. EC 6.3.4.14
Phosphoribosylaminoimidazole synth. EC Eﬁggl
Asparaginase EC 3.5.1.10 R

7N
| Zn—containing alcohol dehydrogenase
J/’J superfamnily EC 1.1.1.1(1) has a range of functions:
g D-Xylulose reductase EC 1.1.1.9
Benzyl-alcohol dehydrogenase EC 1.1.1.90
L~Threonine dehydrogenase EC 1.1.1.103
Formaldehyde dehydrogenase EC 1.2.1.46
NADPH Quinone reductase 1.6.5.5
%

7
32191/
32.1 uz/”/?"/ ‘/'1 vy

A
s %\x“ﬂ‘ \

1.1.48
34114 5.52.3

342215




2.1.1.72
53138 1.186.1 1951

23186\\“\\\ by ”p;,#//1653

24156
\

*'/)/,1241

1212

~
%

>
k‘\‘ 4.2.1.1
o
w

b\

4.2.99.18




F~structure and it is hard to make inferences from
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) linear sequence

* Biocatalytic function definitions based on the EC
are not always precise and computable

Specific issues:
Distant homologues are hard to identify

Proteins in superfamilies have divergent functions

We need sensitive and specific methods




achine Learning (ML) can be used to induce
rules that can characterize proteins according to
functional classes

= Strategy:

Identify superfamilies as relevant data sets for training
as they contain examples of divergent functions

Functionally relevant representations of proteins
based on conserved modules

Induction algorithms to infer hypothesis about the \3{
correlation between the proteins and their blocatalytlc\

functions s
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Efficiently annotate each ORF in a genome with
putative enzymatic functions

Vary the sensitivity and specificity of function inference

Search for plausible protein candidates with a
biocatalytic function
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e can infer metabolic pathways from genomic

data, or just synthetic pathways, through heuristic
search

We can accurately assign enzymatic functions to
putative proteins by machine learning.

By combining function inference with pathway
search, we can improve predictions further
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